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Motivation

• Understanding the performance of SGD in neural
networks is a major endeavor in machine learning, and
significant progress was achieved in the context of large
two-layer neural net

• High dimensional limit has been investigated first in the
seminal work of [3], developing some ODEs for the
dynamics.

• The optimization over wide two-layer neural networks can
be rigorously studied using a well-defined PDE [4, 5]

Aim: drawing a precise connection between two limits

Teacher-student model with online SGD

We introduce a teacher-student two-layer neural network
model for studying the dynamics of the training with SGD:
• Input data is generated from independent Gaussian

distributions:
xν ∼ N

(
0d,

1
d

Id

)
Labels are generated by a teacher network

yν = 1
k

k∑
r=1

a⋆
rσ

⋆(w⋆
r

⊤xν) +
√

∆zν, zν ∼ N (0, 1)

where ∆ is the artificial noise.
• The student network to be learned is

fΘ(x) = 1
p

p∑
i=1

aiσ(w⊤
i x)

• We are using the square loss function. The population
risk is given by:

R(Θ) := E(x,y)∼ρ

[
1
2
(fΘ(x) − y)2

]
+ ∆

2
• We are using the online stochastic gradient descent:

Θν+1 = Θν − γ∇Θℓ(fΘν(xν), yν), ν ≤ n

Assumptions
Symplifying assumptions
• a⋆

r = 1 and aν
i = 1;

• W ⋆ is full-rank;
• p is divisible by k;

Technical assumptions
• With high probability:

∀i ∈ [p], ∥wi
2∥ ≤ K.

• ∥σ(i)∥∞ ≤ K for i = 0, 1, 2.

Main goal
We aim for a common description for 3 different limits

In particular a low-dimensional analysis for joint high-dimensional
mean field limit!

Low-dimensional sufficient statistics

Overlaps are sufficient statistics:

Ων :=

(
Qν Mν

Mν⊤ P

)
= 1

d
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)
∈R(p+k)×(p+k)

We can derive a closed set of stochastic processes
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(OV-SP)

where the local fields are jointly Gaussian vectors

(λν, λ⋆ν) ∼ N (0p+k, Ων).

Informally, when γ
pd there is ODEs approximation

dM
dt

=Ψ(M)(Ω),
dQ
dt

=Ψ(GF)(Ω) + γ

p
Ψ(Var)(Ω),

(SS-ODE)

Ψ(M)
ir (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)λ⋆

r E
]

Ψ(GF)
ij (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[(
σ′(λi)λj + σ′(λj)λi

)
E
]

Ψ(Var)
ij (Ω) = E(λ,λ⋆)∼N (0p+k,Ω)

[
σ′(λi)σ′(λj) E2

]

Theorem (Veiga et al. [2])
Let Ων be the random process of Eq. (OV-SP), and Ω(t) the
solution to the ODE (SS-ODE) with starting point Ω(0) = Ω0.
Define the stepsize δt = γ

pd, and assume that γ/p = O(1). Then
there exists a constant C > 0 such that for any ν ≥ 0,

∥Ων − Ω(νδt)∥∞ ≤ eCνδt

√
γ

pd

Key observation

(SS-ODE) hold whenever γ
pd → 0, not only when d → +∞.
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Classical limit (γ → +0)
The equations are equivalent to the gradient flow equations

dwi

dt
= ∇wi

R(Θ)

Dimension Independence

(SS-ODE) is independent of the data dimension d.
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The trajectories are exactly in the same whether d is large
or small, when starting from the same initial condition.

Overparametrized regime (p → +∞)
Decompose the student between the teacher’s space and its or-
thogonal

W = MP−1W ⋆ + W ⊥

Q⊥ = Q − MP−1M⊤

λ⊥ ∼ N
(

0p, Q⊥
)

Q⊥ can replace Q and the overlaps are still sufficient, with ODE:
dQ⊥

ij

dt
= E(λ⊥,λ)

[(
σ′(λi)λ⊥

j + σ′(λj)λ⊥
i

)
E
]

:= Ψ⊥
ij(Ω).

Low dimensional mean-field

Assumption (w1, . . . , wp) are drawn i.i.d from an orthog-
onally invariant and K2

d -subgaussian distribution.
Ansatz Just in the dynamic equation, the weights

w⊥
i ≈

√
Q⊥

ii · gi Q̃ = MP −1M⊤ + D√
Q⊥ΞD√

Q⊥

where D√
Q⊥ =

√
diag

(
Q⊥
)

and

Ξii = 1, Ξij = ⟨g, g′⟩ with g, g′ ∼ Unif
(
Sd−k−1

)
Reduced ODEs and risk

dM

dt
= EΞ

[
Ψ(M)(Ω̃)

] dQ⊥
ii

dt
= EΞ

[
Ψ⊥

ii(Ω̃)
]

(MF-ODE)

R(Θ̃) = EΞ

[
R(Ω̃)

]

10−2 10−1 100 101 102 103

t

10−7

10−6

10−5

10−4

10−3

10−2

10−1

R
−

∆ 2

Simulation

p = 100

p = 200

p = 1000

p = 2000

Theorem. Let Ω(t) and Θ̃(t) denote the solutions of
(SS-ODE) and (MF-ODE), respectively. Then with proba-
bility at least 1 − e−z2 on the initialization:

sup
t∈[0,T ]

∣∣∣R(Ω(t)) − R(Θ̃(t))
∣∣∣ ≤ CeCT

(√
log(pT ) + z

)
/
√

p .

High-dimensional mean-field

When d → +∞ the random matrix Ξ is the identity.
(MF-ODE) becomes

dM

dt
= Ψ(M)(Ω̄) dQ⊥

ii

dt
= Ψ⊥

ii(Ω̄). (HDMF-ODE)
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Theorem. Let Ω(t) and Θ̄(t) denote the solutions of
(SS-ODE) and (HDMF-ODE), respectively. Then with prob-
ability at least 1 − e−z2 on the initialization:

sup
t∈[0,T ]

∣∣∣R(Ω(t))−R(Θ̄(t))
∣∣∣ ≤ CeCT

(√
log(pT ) + z

√
p

+ 1√
d

)

(HDMF-ODE) are the particle dynamics of a measure over the
sufficient statistics. Introducing a measure µ(m,q) over Rk+1 as

µt := h#µt where h(w) =
(

W ⋆w

d
, ∥w⊥∥2

)
the evolution can be written as Wasserstein GD

∂tµ(m,q) = ∇(m,q) ·
(

µ(m,q)φ( · , µ(m,q))
)
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