Motivation

Understanding the performance of SGD in neural
networks is a major endeavor in machine learning, and
significant progress was achieved in the context of large
two-layer neural net

High dimensional limit has been investigated first in the
seminal work of [3], developing some ODEs for the
dynamics.

The optimization over wide two-layer neural networks can
be rigorously studied using a well-defined PDE [4, 5]
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Aim: drawing a precise connection between two limits

Teacher-student model with online SGD

We introduce a teacher-student two-layer neural network
model for studying the dynamics of the training with SGD:

® Input data is generated from independent Gaussian

distributions: .
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Labels are generated by a teacher network
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where A is the artificial noise.

® The student network to be learned is
p
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e \We are using the square loss function. The population
risk is given by:
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e \We are using the online stochastic gradient descent:
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Assumptions

Technical assumptions
e With high probability:

Vi€ [pl, |wi’ll < K.
o |0 < K fori=0,1,2.

Symplifying assumptions
e v =1and a/ =1,

o /™" is full-rank;

® 7 is divisible by k;
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Main goal

We aim for a common description for 3 different limits

Mean field limit
p —> OO0

v, d=0()

g2g>

Classical limit High-d limit
y = 0% d—> o
d,p = 0(1) v,p = 0(1)

In particular a low-dimensional analysis for joint high-dimensional
mean field limit!

Low-dimensional sufficient statistics

Overlaps are sufficient statistics:
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We can derive a closed set of stochastic processes
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where the local fields are jointly Gaussian vectors

(A, A7)~ N (0,25, Q).

Informally, when pld there is ODEs approximation

(SS-ODE)
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Theorem (Veiga et al. [2])

Let ) be the random process of Eq. (OV-SP), and §)(t) the

solution to the ODE (SS-ODE) with starting point Q(0) = Q.

Define the stepsize 0t = 15, and assume that v/p = O(1). Then
p

there exists a constant C' > 0 such that for any v > 0,
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Key observation

(SS-ODE) hold whenever - — 0, not only when d — +oc.
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Classical limit (v — +0)

The equations are equivalent to the gradient flow equations
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Dimension Independence

(SS-ODE) is independent of the data dimension d.
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The trajectories are exactly in the same whether d is large
or small, when starting from the same initial condition.
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Overparametrized regime (p — +)

Decompose the student between the teacher's space and its or-
thogonal
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Q™ can replace Q and the overlaps are still sufficient, with ODE:
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Assumption (wi, ..., w,) are drawn i.i.d from an orthog-
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onally invariant and %—subgaussmn distribution.
Ansatz Just in the dynamic equation, the weights
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where D\/@ = \/diag (Q*) and
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Reduced ODEs and risk

dM ~ dQ): .
RS {qf(M)(Q)} Wi _ - {\IJ;(Q)} (MF-ODE)
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R(O) = E= [R(Q)]
— ® Simulation
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Theorem.  Let Q(t) and O(t) denote the solutions of

(SS-ODE) and (MF-ODE), respectively. Then with proba-
bility at least 1 — e~ * on the initialization:

sup [RUE) - R(O(1)] < CeT (Vioa(pT) +2) /5.

High-dimensional mean-field

When d — +00 the random matrix = is the identity.
(MF-ODE) becomes
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Theorem.  Let Q(t) and O(t) denote the solutions of
(SS-ODE) and (HDMF-ODE), respectively. Then with prob-

ability at least 1 — e~ ~ on the initialization:
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(HDMF-ODE) are the particle dynamics of a measure over the
sufficient statistics. Introducing a measure fi(y, o) Over RFF1 as

d

the evolution can be written as Wasserstein GD

W‘k
= g where h(w) = (2, )

at:u(m,q) — V(m,q) . (M(m,q)@( ' 7:u('m,,q)))
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