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Context & Motivation

The study of generalized linear models
Y = 0y (wjm) =+ \/Zz,
with Gaussian data z ~ N(0, 1/dl;), z ~ N(0, 1) has been developed

recently, leading to the following results:

e for matching activation function, the sample complexity of
one-pass SGD is determined by the first non-zero Hermite
coefficient of the target oy, also known as the information
exponent [2];

wide two-layer networks can achieve the well-specified sample
complexity of n = O(d) under one-pass SGD, provided that all
Hermite coefficients of both o,, o are non-zero (IE= 1)][3].

Aim: Compute the exact convergence rate of SGD for this class of
models.

Setting

The exact model we are going to study is the following:

® |nput data is generated from independent Gaussian distributions:

1
x’ ~ N (Od, Eld)
Labels are generated by

y:(w x) +\/_z

where A is the artificial noise.

w, € STV d)

e We are training a two-layer network with square activations:
p

folz) = =5 ay(w] z)

L

w; € Sd_l(\/a)

e \We are using the square loss function. The population risk is given
by:

A

R<@) = E T,y)~p (f@( ) ) + 5

e \We consider both standard & projected online SGD:

w? — YV l(y", feor(z")) v

wu—i—l

H’w — YV, Uy, f@v(w”))H

High dimensional limit ODE description

We can introduce the following sufficient statistics:
v v vl Vx|
OV — Q T m — l WoW T W w*_l_ c R(p+1)><(p+1)
mY 0 d \ wWv wWAw*

We can derive a closed set of stochastic processes

v+1 V T oery2
a; a; pdg)\

v+1 L

]l = Q]g(a )\*, )\) = 2pd51/ (CL]' + CL[) )\j)\l

+ 4—d<‘3”2|]37”||2ajal)\j)\l

where the local fields are jointly Gaussian vectors

(AY, A7) ~ N(0, 5, Q).

(a/ )\*7 )\) — 2 ((:VCL])\])\*
v+1
jl

Informally, when -1, — 07" there is ODEs approximation
p

= EO)~N(0,1.9) 5 A?]

= BN (0,0.0) [Mila, A, A)] = 05 (Q)

:le(aa )\*7 A)]

Projected SGD The modified equations for the spherical constraint

= EO)~N(0,1.9) = 0;; ()

Note that QQ;; = 1 is consistently fixed.

Escaping mediocrity at initialization

In the absence of knowledge of the process that generated the data,
it is customary to initialize the weights randomly:

ngN(()?]d)a .]:177p

In high-dimesnion, this means w; L w; L w..
sufficient statistics, this corresponds to

Q; ~ Dirac(1), j#1: VdQl 5% A(0,1)
\/ngM%N(O, 1)

J

In terms of the

Needle in the haystack: the proliferation of flat directions close
to initialization severely slows down the SGD dynamics at high-
dimensions; the starting point is a fixed point of the ODEs.
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Escaping mediocrity in the well-specified scenario

Given that p = 1 there is one single parameter describing the system:

w ' w*

d
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The ODE and the risk are written as

dfg—f’f) — a(t) [4(1 —69)(1 — (1)) — ZVA}
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Some nice side effects:

e Bounds on the learning rate: it must be in the range 0 < v < 1/.

e Minimal risk reached Fixed point of the equation:
A

lim ROm(t)) — &2 = 11~

t—o0

Compute the time te, needed to reach a given threshold T’

1-7) (R0) - 5 ) = (R(m(te) - 5) - (EXT)

We can average the solution over the initial condition:

e before solving, annealed formula

t(anl) B lOg [Td + (1 — T)]
ext T
8(1 — 6y) — 4vA

® after solving, quenched formula

log [
8(1 —67)

+(1-1)]
— 4vA)

tor” = Bzt

We arrive at the following conclusions:
(anc) , (anl)

® By concavity of the logarithm function, we have ¢ .

® tor = O(logd) = n = O(dlogd) as in [2].
® There exist an optimal learning rate:

1
12+A

This minimizes the escaping time but not the time to learn nor
the minimal risk.

Yopt —

Does stochasticity help?

Add the first correction to the expected value of the ODE

dm m 7y m
2o (1(Q) — — (D N, — 2o ) -dB
— ( () = S ))dt+\/;(a ZUQ) 4B,

where o, and o are the standard deviations of M and Q.

Sim. t.,; =1.13
ODE ¢t.,, =1.09
SDE ¢, =1.21
Threshold
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Take-homes:

e The SDE grasps the sample stochasticity of the SGD dynamics.
e The exit time is not affected by the stochasticity though.
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Wide networks

Eq. (EXT) is valid for any p > 1. We can derive again the two
formulae for the escaping time:

e annealed formula

log [T(p+1)d+2(§+1)(1—T)}

8[1——(1+ T+ )]

log {Tp(p+1)d+giﬁé%p—fo)(1—T)}

8[1——<1+ . )]
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e quenched formula
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The formulae match when p — oo.
The sample complexity is again n = O(dlogd)
There exits an optimal learning rate o (p, A).

Traing with 7opt at every p allow us to estimate the gain factor
of overparametrization:

SGD steps at p =1
SGD steps at p — +00

C124+A
24 A

No significant improvement over the p = 1 case.

Training the second layer

As of now, we fixed a; = 1 for all j, but we can train them as
well. We numerically showed that we can extend the results when
the second layer is trained.
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