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Context & Motivation

The study of generalized linear models

y = σ⋆

(
w⊤

⋆ x
)

+
√

∆z,

with Gaussian data x ∼ N (0, 1/dId), z ∼ N (0, 1) has been developed
recently, leading to the following results:
• for matching activation function, the sample complexity of

one-pass SGD is determined by the first non-zero Hermite
coefficient of the target σ⋆, also known as the information
exponent [2];

• wide two-layer networks can achieve the well-specified sample
complexity of n = O(d) under one-pass SGD, provided that all
Hermite coefficients of both σ⋆, σ are non-zero (IE= 1)[3].

Aim: Compute the exact convergence rate of SGD for this class of
models.

Setting
The exact model we are going to study is the following:
• Input data is generated from independent Gaussian distributions:

xν ∼ N
(

0d,
1
d

Id

)
Labels are generated by

y =
(

w⊤
⋆ x
)2

+
√

∆z, w⋆ ∈ Sd−1(
√

d)

where ∆ is the artificial noise.
• We are training a two-layer network with square activations:

fΘ(x) = 1
p

p∑
i=1

ai(w⊤
i x)2 wj ∈ Sd−1(

√
d)

• We are using the square loss function. The population risk is given
by:

R(Θ) := E(x,y)∼ρ

[
1
2
(fΘ(x) − y)2

]
+ ∆

2

• We consider both standard & projected online SGD:

wν+1
j =

wν
j − γ∇wj

ℓ(yν, fΘν(xν))∥∥∥wν
j − γ∇wj

ℓ(yν, fΘν(xν))
∥∥∥

√
d

High dimensional limit ODE description

We can introduce the following sufficient statistics:

Ων :=

(
Qν mν

mν⊤ ρ

)
= 1

d

(
WνWν⊤ Wνw⋆⊤

w⋆Wν⊤ w⋆w⋆⊤

)
∈ R(p+1)×(p+1)

We can derive a closed set of stochastic processes

aν+1
j − aν

j = γ

pd
Eνλ2

j

mν+1
j − mν

j =:Mj(a, λ⋆, λ) = 2 γ

pd
Eνajλjλ⋆

Qν+1
jl − Qν

jl =:Qjl(a, λ⋆, λ) = 2 γ

pd
Eν
(
aj + al

)
λjλl

+ 4 γ2

p2d
Eν2||xν||2ajalλjλl

where the local fields are jointly Gaussian vectors

(λν, λ⋆ν) ∼ N (0p+k, Ων).

Informally, when γ
pd → 0+ there is ODEs approximation

dāj

dt
= E(λ,λ⋆)∼N (0p+1,Ω)

[
Eλ2

j

]
dm̄j

dt
= E(λ,λ⋆)∼N (0p+1,Ω)

[
Mj(a, λ⋆, λ)

]
=: Ψj (Ω)

dQ̄jl

dt
= E(λ,λ⋆)∼N (0p+1,Ω)

[
Qjl(a, λ⋆, λ)

]
=: Φjl (Ω)

Projected SGD The modified equations for the spherical constraint
are

dm̄j

dt
=Ψj(Ω) − m̄j

2
Φjj(Ω),

dQ̄jl

dt
=Φjl(Ω) − Q̄jl

2
(
Φjj(Ω) + Φll(Ω)

)
.

Note that Qjj = 1 is consistently fixed.

Escaping mediocrity at initialization

In the absence of knowledge of the process that generated the data,
it is customary to initialize the weights randomly:

w0
j ∼ N (0, Id), j = 1, · · · , p.

In high-dimesnion, this means wj ⊥ wl ⊥ w⋆. In terms of the
sufficient statistics, this corresponds to

Qjj ∼ Dirac(1), j ̸= l :
√

d Q0
jl

d→+∞−−−−→ N (0, 1)
√

d m0
j

d→+∞−−−−→ N (0, 1)

Needle in the haystack: the proliferation of flat directions close
to initialization severely slows down the SGD dynamics at high-
dimensions; the starting point is a fixed point of the ODEs.

Escaping mediocrity in the well-specified scenario
Given that p = 1 there is one single parameter describing the system:

m ≡ w⊤w⋆

d
.

The ODE and the risk are written as
dm̄(t)

dt
= m̄(t)

[
4(1 − 6γ)(1 − m̄2(t)) − 2γ∆

]
R(m̄) = 2

(
1 − m̄2

)
+ ∆
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Some nice side effects:
• Bounds on the learning rate: it must be in the range 0 < γ < 1/6.
• Minimal risk reached Fixed point of the equation:

lim
t→∞

R(m̄(t)) − ∆/2 = γ∆
1 − 6γ

Measuring the escaping time

Compute the time text needed to reach a given threshold T

(1 − T )
(

R
(
m̄(0)

)
− ∆

2

)
=
(

R
(
m̄ (text)

)
− ∆

2

)
. (EXT)

We can average the solution over the initial condition:
• before solving, annealed formula

t
(anl)
ext =

log
[
Td + (1 − T )

]
8(1 − 6γ) − 4γ∆

• after solving, quenched formula

t
(qnc)
ext = Eµ0∼χ2(1)

log
[

Td
µ0

+ (1 − T )
]

8(1 − 6γ) − 4γ∆)


We arrive at the following conclusions:
• By concavity of the logarithm function, we have t

(qnc)
ext ≥ t

(anl)
ext .

• text = O(log d) =⇒ n = O(d log d) as in [2].
• There exist an optimal learning rate:

γopt = 1
12 + ∆

This minimizes the escaping time but not the time to learn nor
the minimal risk.

Does stochasticity help?

Add the first correction to the expected value of the ODE
dm

dt
=
(

Ψ1(Ω) − m

2
Φ11(Ω)

)
dt +

√
γ

d

(
σm − m

2
σQ

)
· dBt

where σm and σQ are the standard deviations of M and Q.
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Take-homes:
• The SDE grasps the sample stochasticity of the SGD dynamics.
• The exit time is not affected by the stochasticity though.

Wide networks

Eq. (EXT) is valid for any p ≥ 1. We can derive again the two
formulae for the escaping time:
• annealed formula

t
(anl)
ext =

log
[

T (p+1)d+(p+1)(1−T )
2p

]
8
[
1 − γ

p

(
1 + 1

p + 4
p2 + ∆

2

)],

• quenched formula

t
(qnc)
ext = Eµ0,τ0∼Pd

p

 log
[

Tp(p+1)d+(2µ0p−τ0)(1−T )
2µ0p

]
8
[
1 − γ

p

(
1 + 1

p + 4
p2 + ∆

2

)]


where µ0, τ0 ∼ Pd
p and

Pd
p ≡

d

p∑
j=1

(uj · v)2, 2d

p∑
j=1

p∑
l=j+1

(uj · ul)2


with v, uj ∼ Sd−1(1).
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• The formulae match when p → ∞.
• The sample complexity is again n = O(d log d)
• There exits an optimal learning rate γopt(p, ∆).
• Traing with γopt at every p allow us to estimate the gain factor

of overparametrization:
SGD steps at p = 1

SGD steps at p → +∞
= 12 + ∆

2 + ∆
No significant improvement over the p = 1 case.

Training the second layer

As of now, we fixed aj = 1 for all j, but we can train them as
well. We numerically showed that we can extend the results when
the second layer is trained.
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